
Mutual exclusion

Let us now look at a larger example of verification using LTL, having to do with mutual exclusion.

When concurrent processes share a resource (such as a file on a disk or a database entry), it may

be necessary to ensure that they do not have access to it at the same time. Several processes

simultaneously editing the same file would not be desirable.

We therefore identify certain critical sections of each process’ code and arrange that only one

process can be in its critical section at a time. The critical section should include all the access to

the shared resource (though it should be as small as possible so that no unnecessary exclusion takes

place). The problem we are faced with is to find a protocol for determining which process is

allowed to enter its critical section at which time. Once we have found one which we think works,

we verify our solution by checking that it has some expected properties, such as the following

ones:

Safety: Only one process is in its critical section at any time.

This safety property is not enough, since a protocol which permanently excluded every process

from its critical section would be safe, but not very useful. Therefore, we should also require:

Liveness: Whenever any process requests to enter its critical section, it will eventually be permitted

to do so.

Non-blocking: A process can always request to enter its critical section.

Some rather crude protocols might work on the basis that they cycle through the processes, making

each one in turn enter its critical section. Since it might be naturally the case that some of them

request access to the shared resource more often than others, we should make sure our protocol

has the property:

No strict sequencing: Processes need not enter their critical section in strict sequence.

The NuSMV model checker

NuSMV stands for ‘New Symbolic Model Verifier.’ NuSMV is an Open Source product, is

actively supported and has a substantial user community.

NuSMV (sometimes called simply SMV) provides a language for describing the models we have

been drawing as diagrams and it directly checks the validity of LTL (and also CTL) formulas on

those models. SMV takes as input a text consisting of a program describing a model and some

specifications (temporal logic formulas). It produces as output either the word ‘true’ if the

specifications hold, or a trace showing why the specification is false for the model represented by

our program.

SMV programs consist of one or more modules. As in the programming language C, or Java, one

of the modules must be called main. Modules can declare variables and assign to them.

Assignments usually give the initial value of a variable and its next value as an expression in terms

of the current values of variables. This expression can be non-deterministic (denoted by several

expressions in braces, or no assignment at all). Non-determinism is used to model the environment

and for abstraction.

The following input to SMV:

MODULE main

VAR

request : boolean;

status : {ready,busy};

ASSIGN

init(status) := ready;

next(status) := case

request : busy;

1 : {ready,busy};

esac;

LTLSPEC

G(request -> F status=busy)

consists of a program and a specification. The program has two variables, request of type boolean

and status of enumeration type {ready, busy}: 0 denotes ‘false’ and 1 represents ‘true.’ The initial

and subsequent values of variable request are not determined within this program; this

conservatively models that these values are determined by an external environment. This under-

specification of request implies that the value of variable status is partially determined: initially, it

is ready; and it becomes busy whenever request is true. If request is false, the next value of status

is not determined.

Note that the case 1: signifies the default case, and that case statements are evaluated from the top

down: if several expressions to the left of a ‘:’ are true, then the command corresponding to the

first, top-most true expression will be executed. there are four states, each one corresponding to a

possible value of the two binary variables. Note that we wrote ‘busy’ as a shorthand for

‘status=busy’ and ‘req’ for ‘request is true.’

It takes a while to get used to the syntax of SMV and its meaning. Since variable request functions

as a genuine environment in this model, the program and the transition system are non-

deterministic: i.e., the ‘next state’ is not uniquely defined. Any state transition based on the

behaviour of status comes in a pair: to a successor state where request is false, or true, respectively.

For example, the state ‘¬req, busy’ has four states it can move to (itself and three others).

LTL specifications are introduced by the keyword LTLSPEC and are simply LTL formulas. Notice

that SMV uses &, |, -> and ! for ∧, ∨, → and ¬, respectively, since they are available on standard

keyboards. We may easily verify that the specification of our module main holds of the mode.

